

### EBARA REFRIGERATION EQUIPMENT & SYSTEMS CO., LTD. http://www.ers.ebara.com/en/

#### Head Office & Sales Department

3-2-16 Ohmorikita, Ohta-ku, Tokyo143-0016, JAPAN Phone: +81-3-6384-8145 Fax: +81-3-5493-0716

EBARA CORPORATION

#### Head Office:

11-1, Haneda Asahi cho, Ohta-ku, Tokyo, 144-8510 Japan Phone: +81-3-3743-6111 Fax: +81-3-3745-3356 Cable: EBARAMAIN TOKYO Int'l Telex: J22988 EBARA TYO 3-2-16 Ohmorikita, Ohta-ku, Tokyo143-0016, JAPAN Phone: +81-3-6384-8145 Fax: +81-3-5493-0716

#### ○ Liaison Offices & Distributors

#### ITALY

ODvnamis Sistemi Diclimatizzazione Phone: +39-032145-7643

#### HUNGARY

ORegale Klimatechnika Kft. Phone: +36-1-212-2099

#### TURKEY

OAtlantik Grup Phone: +90-216-553-9570

#### PEOPLE'S REPUBLIC OF CHINA

OYantai Ebara Air Conditioning Equipment Co., Ltd. Phone: +86-535-630-3890

#### TAIWAN

OEbara Corporation Taipei Office Phone: +886-2-2567-1310 OMing Kung Ind. Co., Ltd. Phone: +886-2-2816-1230

#### SINGAPORE

OEbara Engineering Singapore Pte., Ltd. Phone: +65-6865-5239

#### INDONESIA

OPT. Ebara Indonesia Phone: +62-21-874-0852

#### THAILAND

- OAsia Shinwa Engineering Co., Ltd. ERS Unit Phone: +66-2-612-9357~9
- OEbara(Thailand)Limited Head Office Phone: +66-2-216-4935~6, +66-2-612-0322~30

### PAKISTAN

OArshad Amjad & Abid(Pte)Ltd. Phone: +92-21-454-2112

#### IRAN

OKar-O-Andisheh Engineers Corporation Phone: +98-21-8888-0292

#### EGYPT

OThe Egyptian Co. for Refrigeration by Natural Gas(GASCOOL) Phone: +20-2-2270-6390, 2275-2478

# KOREA

OHanseo Air Conditioning Co., Ltd. Phone: +82-2-3412-1270

#### INDIA

OKirloskar Pneumatic Co., Ltd. Phone: +91-20-2672-7000

#### VIETNAM

OEbara Refrigeration Equipment & Systems Co., Ltd. Vietnam Office Phone: +84-8-406-1602

#### MALAYSIA

OEbara Pumps Malaysia Sdn Bhd Phone: +60-3-8023-6622



# **DOUBLE EFFECT ABSORPTION CHILLERS** MODEL REW & RGWA SERIES

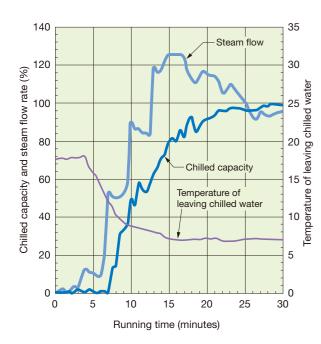
# STEAM CONSUMPTION RATE: 3.9kg/(h·USRt) 3.95kg/(h·USRt)



CR9207EA

\*"Model OOO" in this catalog is our model code.

# **MODEL REW** is;


The double effect chiller is high efficiency model, which steam consumption rate is 3.9kg/(h·USRt) The chiller is controlled by high performance micro processor

# **ADVANCED MICROPROCESSOR**

The microprocessor as the heart of the chiller has been improved to provide even better performance, enabling ideal operation control and operation information management.

# 1. Quick startup for energy saving

The time from operation start to actual running has been reduced by optimizing the amount of solution circulating at the operation start. This also saves energy at startup.



# 2. Reduced dilution time at shutdown

The minimum diluting time is decided according to the operation status at shutdown. Over-dilution is thus avoided and energy conserved.

# **3.** Interlocking circuits of auxiliary devices as standard

Interlocking circuits are provided as standard for the pumps of the chilled water and cooling water and for the fan of the cooling tower. Also, the start-stop circuit of the cooling tower fan houses a temperature sensor as standard, for reduced initial costs.

# 4. Digital display of operation status

The control panel displays information required for operation management, such as the temperature of the chilled water, the cooling water, and the solution.

- Outlet temp. of high temp. generator
- Inlet temp. of high temp. generator
- Condensation temp. of high temp. generator
- Chiller on-off times
- Temp. of leaving/entering chilled water Temp. of leaving/entering cooling water
- Chiller running time •Running time of refrigerant pump
- Running time of solution pump
- Refrigerant evaporating temp.
- Refrigerant condensing temp.
- Absorber solution temp.
- Valve opening position
- Solution pump running time
- Refrigerant pump running time

# 5. Failure recovery function

The chiller's sensors constantly monitor the operating status and condition. The automatic failure recovert function can remedy many abnormalities, thus minimizing stoppages owing to failures. • Dew point control for high temp. generator Solution temperature control for high temp. generator

•High temperature generator keeping below ambient control

## 6. Pre-alarm system for preventive maintenance

The pre-alarm system gives advance notice about maintenance information, such as fouling in cooling water tubes and the time for replacing parts.

- Rise in LTD of cooling water
- Purge pump overload
- Replacement time for parts
- Abnormalities in level control of high temp. generator
- Rise in internal pressure
- Abnormalities indicated by temperature sensor (7-segment indication)
- Rise in temperature of entering cooling water
- •Rise in concentration of solution in high temp. generator
- Rise in condensation temperature of high temp. generator
- Rise in temperature of solution of generators

### 7. Instantaneous power-failure recovery circuit as standard

As standard, the chiller contains an instantaneous power failure recovery circuit. An optional circuit is also available for power failures lasting up to 10 minutes. The circuitry enables the chiller to start automatically once power is recovered. However, this requires equipment to cut off the steam at power failure. When a power failure lasts longer than 10 minutes, a safety shutdown occurs.



# Steam drain outlet temperature below 90°C, thus saving energy.

The steam drain is cooled down below 90°C, to prevent flushing at the drain outlet. Further, the drain trap is factory mounted to the chiller, thus reducing installation costs.

# Excess steam start up consumption prevention

The steam valve is set to slow start to prevent excessive consumption of steam at cold start. Also, the operation system of the boiler minimizes problems.

# No manual purge is required by **Automatic Purge Unit**

While the chiller is running, the ejector uses the discharge pressure of the solution pump to continuously feed noncondensables (hydrogen generated in the chiller and air leaked from outside) to the purge tank, thus keeping the inside of the chiller clean. Noncondensable gas and hydrogen gas accumulated in the purge tank is automatically discharged outside via the auto purge unit. This auto purge unit eliminates the need to purge hydrogen gas, and noncondensable, for ordinary air-conditioning purposes.

# Marine-type water boxes as standard.

To facilitate tube inspection and cleaning, a marine-type water box is provided as standard for the chilled and cooling water system. Also, the cover of the water box is hinged so that tubes can be cleaned easily at the jobsite

# **MODEL: REW**

| MOD                  | EL               |       | REW015 | REW018                                       | REW021 | REW025 | REW028 | REW032 | REW036 | REW040 | REW045 |  |  |  |
|----------------------|------------------|-------|--------|----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
| 0001                 |                  | kW    | 527    | 633                                          | 738    | 879    | 985    | 1,125  | 1,266  | 1,407  | 1,582  |  |  |  |
| COOLING CAPACITY     |                  | USRt  | 150    | 180                                          | 210    | 250    | 280    | 320    | 360    | 400    | 450    |  |  |  |
| ER                   | Temperature      | S     |        |                                              |        |        | 12 → 7 |        |        |        |        |  |  |  |
| VATI                 | Flow Rate        | L/min | 1,510  | 1,810                                        | 2,120  | 2,520  | 2,820  | 3,230  | 3,630  | 4,030  | 4,540  |  |  |  |
| CHILLED WATER        | Press. Drop      | kPa   | 81     | 86                                           | 77     | 81     | 72     | 72     | 74     | 75     | 70     |  |  |  |
|                      | Connection Size  | mm    | 100    | 100                                          | 125    | 125    | 150    | 150    | 150    | 150    | 200    |  |  |  |
| Я                    | Pass             | -     | 4      | 4                                            | 4      | 4      | 3      | 3      | 3      | 3      | 3      |  |  |  |
| ER                   | Temperature      | Ĵ     |        | 32 → 37.3                                    |        |        |        |        |        |        |        |  |  |  |
| COOLING WATER        | Flow Rate        | L/min | 2,500  | 3,000                                        | 3,500  | 4,170  | 4,670  | 5,330  | 6,000  | 6,670  | 7,500  |  |  |  |
| 5                    | Press. Drop      | kPa   | 89     | 99                                           | 91     | 98     | 81     | 84     | 87     | 90     | 83     |  |  |  |
| OLIN                 | Connection Size  | mm    | 125    | 125                                          | 150    | 150    | 200    | 200    | 200    | 200    | 250    |  |  |  |
| Õ                    | Pass             | -     | 3+1    | 3+1                                          | 3+1    | 3+1    | 3+1    | 2+1    | 2+1    | 2+1    | 2+1    |  |  |  |
| Μ                    | Consumption      | kg/h  | 585    | 702                                          | 819    | 975    | 1,092  | 1,248  | 1,404  | 1,560  | 1,755  |  |  |  |
| STEAM                | Steam Connection | mm    | 50     | 50                                           | 65     | 65     | 65     | 65     | 65     | 80     | 80     |  |  |  |
| S                    | Drain Connection | mm    | 25     | 25                                           | 25     | 25     | 25     | 25     | 25     | 25     | 25     |  |  |  |
| Y                    | Power Source     | V×Hz  |        | 200×50/60, 220×60, 380×50/60, 400×50, 440×60 |        |        |        |        |        |        |        |  |  |  |
| ELECTRICITY<br>POWER | Power Capacity   | kVA   | 8.5    | 8.7                                          | 10.1   | 12.6   | 12.7   | 12.7   | 13     | 14.4   | 14.5   |  |  |  |
| ECTRICI              | Refrigerant Pump | kW    | 0.15   | 0.15                                         | 0.3    | 0.3    | 0.3    | 0.3    | 0.4    | 0.4    | 0.4    |  |  |  |
| PC                   | Solution Pump    | kW    | 2.2    | 2.2                                          | 2.2    | 2.2    | 2.2    | 2.2    | 2.2    | 3.7    | 3.7    |  |  |  |
| Ш                    | Spray Pump       | kW    | 1.1    | 1.1                                          | 1.8    | 1.8    | 1.8    | 1.8    | 1.8    | 3.0    | 3.0    |  |  |  |
| 7                    | Length           | mm    | 3,570  | 3,570                                        | 3,585  | 3,585  | 4,680  | 4,680  | 4,720  | 4,700  | 4,820  |  |  |  |
| HT NO                | Width            | mm    | 1,720  | 1,815                                        | 1,880  | 1,990  | 1,950  | 1,960  | 2,150  | 2,160  | 2,255  |  |  |  |
| ENS                  | Hight            | mm    | 1,900  | 1,940                                        | 2,050  | 2,160  | 2,100  | 2,170  | 2,250  | 2,340  | 2,480  |  |  |  |
| DIMENSION<br>WEIGHT  | Dry Weight       | t     | 6.9    | 7.4                                          | 8.1    | 8.8    | 10.8   | 11.5   | 12.8   | 14.8   | 15.6   |  |  |  |
|                      | Operating Weight | t     | 7.4    | 8.0                                          | 8.8    | 9.6    | 11.8   | 12.7   | 14.0   | 16.2   | 17.2   |  |  |  |

# **SCOPE OF SUPPLY**

|                                     |                              |                                                                   |                                   | Supply Po       | rtion: $\bigcirc$ : Ebara $\times$ : Purchaser |
|-------------------------------------|------------------------------|-------------------------------------------------------------------|-----------------------------------|-----------------|------------------------------------------------|
| Item                                | Item Scope of Supply Remarks |                                                                   | Item                              | Scope of Supply | Remarks                                        |
| Chiller                             | 0                            |                                                                   | External pipework                 | ×               | Companion-flanges not included.                |
| Control panel                       | 0                            |                                                                   | External wiring                   | ×               | Interlock wiring not included.                 |
| System wiring and pipework          | 0                            | Connecting piping between absorber and condenser is not required. | Final coat of paint on chiller    | ×               | Control panel installed at site.               |
| Absorber solution and refrigerant   | 0                            | Amount for initial charging                                       | Insulation work for chiller       | ×               |                                                |
| Factory test                        | 0                            | Airtightness test only                                            | Factory witnessed test            | ×               |                                                |
| Transportation                      | 0                            | Tie point is FOB Yokohama or Tokyo port                           | Cooling water temperature control | ×               | For chilled water and cooling water            |
|                                     |                              |                                                                   | Thermometers, pressure gauges     | ×               |                                                |
| Supervision of installation at site | ×                            | (as option) (Note 1)                                              | Flow meter                        | ×               |                                                |
| Fixing anchor bolts                 | ×                            |                                                                   | Drain valve, air vent valve       | ×               |                                                |
| Protection during conveyance        | ×                            |                                                                   | Anchor bolts                      | ×               |                                                |
| Disposal of packing materials       | ×                            |                                                                   | instruction manual                | 0               | Three copies                                   |
| Nitrogen gas for storage            | ×                            |                                                                   | Fuses                             | 0               | Spares                                         |
| Commissioning Supervision           | ×                            | (as option) (Note 1, Note 2)                                      |                                   |                 |                                                |
| Foundation work                     | ×                            |                                                                   |                                   |                 |                                                |

Notes:

1. Please be ready to supply water, electricity, gas and consumables required for installation, test operation and adjustment at supervision.

2. If the temperature of the entering cooling water decreases to 15°C or lower, the temperature of the cooling water must be controlled.

The ON-OFF control circuit for the cooling tower fan is provided as standard (including thermal sensor).

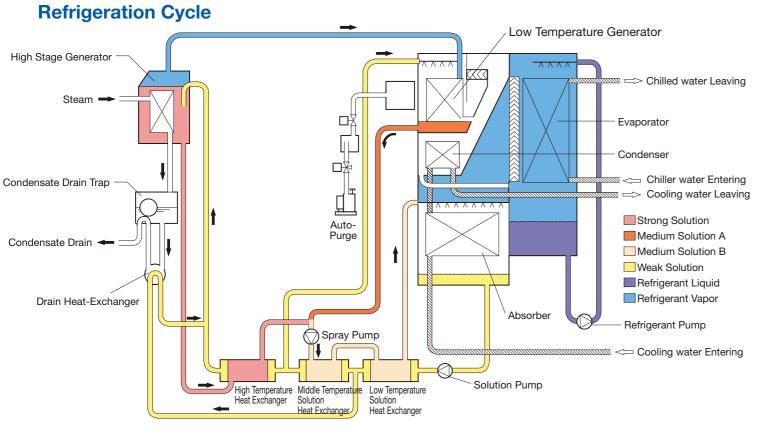
# MODEL: REW & RGWA

| MOD                  | EL               |       | REW050 | REW056 | REW063  | REW070     | RGWA083     | RGWA100    | RGWA120   | RGWA135 | RGWA150 |
|----------------------|------------------|-------|--------|--------|---------|------------|-------------|------------|-----------|---------|---------|
| 0001                 |                  | kW    | 1,758  | 1,969  | 2,215   | 2,461      | 2,919       | 3,516      | 4,220     | 4,747   | 5,274   |
|                      |                  | USRt  | 500    | 560    | 630     | 700        | 830         | 1,000      | 1,200     | 1,350   | 1,500   |
| EB                   | Temperature      | C     |        |        |         |            | 12 → 7      |            |           |         |         |
| VAT                  | Flow Rate        | L/min | 5,040  | 5,640  | 6,350   | 7,060      | 8,370       | 10,080     | 12,100    | 13,610  | 15,120  |
| CHILLED WATER        | Press. Drop      | kPa   | 70     | 54     | 73      | 95         | 74          | 79         | 74        | 77      | 80      |
|                      | Connection Size  | mm    | 200    | 200    | 200     | 200        | 250         | 250        | 300       | 300     | 300     |
| ъ                    | Pass             | -     | 3      | 3      | 3       | 3          | 2           | 2          | 2         | 2       | 2       |
| ER                   | Temperature      | C     |        | 32 →   | 37.3    |            |             |            | 32 → 37.5 |         |         |
| COOLING WATER        | Flow Rate        | L/min | 8,330  | 9,330  | 10,500  | 11,670     | 13,610      | 16,400     | 198,680   | 22,140  | 24,600  |
| 9                    | Press. Drop      | kPa   | 85     | 55     | 73      | 94         | 98          | 98         | 105       | 98      | 102     |
| OLIN                 | Connection Size  | mm    | 250    | 250    | 250     | 250        | 300         | 350        | 350       | 400     | 400     |
| õ                    | Pass             | _     | 2+1    | 2+1    | 2+1     | 2+1        | 2+1         | 2+1        | 2+1       | 2+1     | 2+1     |
| Σ                    | Consumption      | kg/h  | 1,950  | 2,184  | 2,457   | 2,730      | 3,279       | 3,950      | 4,740     | 5,333   | 5,925   |
| STEAM                | Steam Connection | mm    | 80     | 80     | 100     | 100        | 100         | 100        | 125       | 125     | 125     |
| S                    | Drain Connection | mm    | 25     | 25     | 40      | 40         | 40          | 50         | 50        | 50      | 50      |
| Y                    | Power Source     | V×Hz  |        |        | 200×50/ | 60, 220×60 | ), 380×50/6 | 60,400×50, | ,440×60   |         |         |
| CIT                  | Power Capacity   | kVA   | 14.5   | 15.9   | 15.9    | 15.9       | 28.2        | 28.8       | 32.2      | 37.8    | 37.8    |
| ECTRICI<br>POWER     | Refrigerant Pump | kW    | 0.4    | 0.4    | 0.4     | 0.4        | 1.1         | 1.5        | 1.5       | 1.5     | 1.5     |
| ELECTRICITY<br>POWER | Solution Pump    | kW    | 3.7    | 5.5    | 5.5     | 5.5        | 3.7+3       | 3.7+3      | 3.7+3.7   | 4.5+3.7 | 4.5+3.7 |
| Ξ                    | Spray Pump       | kW    | 3.0    | 3.0    | 3.0     | 3.0        | 2.2+3.7     | 2.2+3.7    | 3.7+3.7   | 3.7+4.5 | 3.7+4.5 |
| 7                    | Length           | mm    | 4,820  | 5,350  | 5,870   | 6,330      | 7,150       | 7,125      | 7,200     | 7,300   | 7,300   |
| N H                  | Width            | mm    | 2,310  | 2,670  | 2,670   | 2,670      | 2,720       | 2,960      | 2,960     | 3,260   | 3,450   |
| DIMENSION<br>WEIGHT  | Hight            | mm    | 2,550  | 2,945  | 2,945   | 2,945      | 3,210       | 3,350      | 3,610     | 3,740   | 3,875   |
| MIC                  | Dry Weight       | t     | 17.3   | 21.8   | 22.8    | 24.4       | 23          | 25.7       | 28.5      | 31.8    | 34.8    |
| -                    | Operating Weight | t     | 19.2   | 23.9   | 25.0    | 26.8       | 32.1        | 36.6       | 41.2      | 45.9    | 50.0    |

Notes:

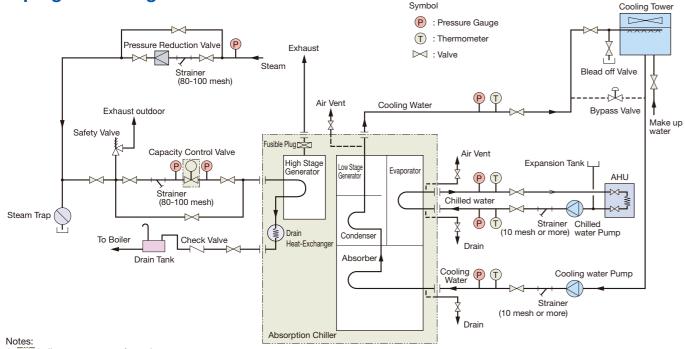
1. Supply steam pressure is 0.78MPa. If steam pressure or temperature (185°C) is over our design, steam pressure and/or temperature shall be reduce it. 2. Water boxes design pressure is 0.78MPa for both chilled & cooling water. Design fouling factor is 0.086m<sup>2</sup>K/kW.

3. Steam condensate is lower than 90°C and pressure is 49kPa.


4. Chiller's performance & mechanical performance is designed in accordance with JIS B 8622.
 5. Please use clean water for both chilled and cooling water, which shall be followed JRA GL-02-1944 standard indicated below.

# Quality standard for cooling water

For efficient operation of the unit for a long term, the water quality control is necessary. The following table shows a quality guideline of the cooling water complied with Japan Refrigeration and Air conditioning Association. (JRA GL-02-1994)

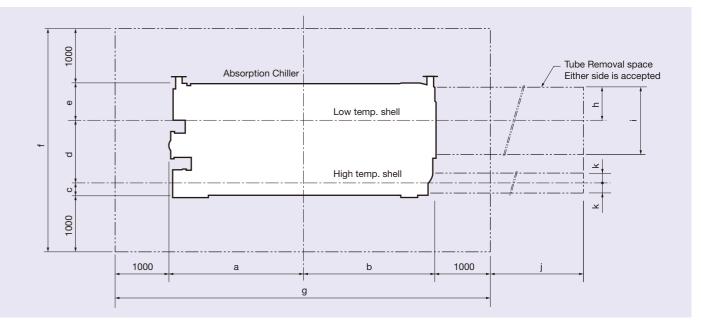

|          |                              |                                      | Cooling wa                      | iter system | Tendencies |             |  |
|----------|------------------------------|--------------------------------------|---------------------------------|-------------|------------|-------------|--|
|          | Item                         |                                      | Circulati                       | ng water    |            |             |  |
|          |                              |                                      | Circulating water Make-up water |             | Corrosion  | Scale/Slime |  |
|          | pH (25℃)                     |                                      | 6.5~8.2                         | 6.0~8.0     | 0          | 0           |  |
|          | Electric conductivity (25°C) | (mS/m)                               | 80 or less                      | 30 or less  | 0          | 0           |  |
| items    | Chloride ions                | (mgCl <sup>-</sup> /L)               | 200 or less                     | 50 or less  | 0          |             |  |
|          | Sulfate ions                 | (mgSO <sub>4</sub> <sup>2-</sup> /L) | 200 or less                     | 50 or less  | 0          |             |  |
| Standard | Acid consumption (pH4.8)     | (mgCaCO₃/L)                          | 100 or less                     | 50 or less  |            | 0           |  |
| Sta      | Total hardness               | (mgCaCO₃/L)                          | 200 or less                     | 70 or less  |            | 0           |  |
|          | Calcium hardness             | (maCaCO₃/L)                          | 150 or less                     | 50 or less  |            | 0           |  |
|          | Ionized silica               | (mgSiO <sub>2</sub> /L)              | 50 or less                      | 30 or less  |            | 0           |  |

Note: As the JRA standard, other items are also listed for your reference.

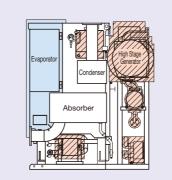


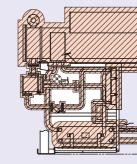
Refrigerant is vaparized and chilled the chilled water in the evaporator. Vaparized refrigerant is absorbed by strong solution in the absorber. Refrigerant absorbed strong solution become weak. Weak solution cannot absorb refrigerant anymore. The weak solution is send to low stage generator and heated and pertially concentrated. Weak solution is send to high stage generator and heated by steam and become strong. Strong solution is come back to absorber mixed with intermediate solution. Separated refrigerant vapor is heating lowstage generator solution and condensed. Condenced refrigerant & separated refrigerant is cooled by cooling water in the condenser and become water refrigerant and come back to evaporator and vaporized again.

# **Piping Flow Diagram**




1. indicate our scope of supply.


2. Indicated parts in this drawing is our sample.


3. Holding chilled water quantity must be more than 5 times of flow rate.

**Maintenance Space** 




| Model (R | EW) | 015  | 018  | 021  | 025  | 028  | 032  | 036  | 040  | 045  | 050  | 056  | 063  | 070  |
|----------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|
| а        | mm  | 1805 | 1805 | 1805 | 1805 | 2345 | 2345 | 2345 | 2345 | 2420 | 2420 | 2670 | 2920 | 3170 |
| b        | mm  | 1775 | 1775 | 1780 | 1775 | 2315 | 2315 | 2320 | 2320 | 2390 | 2390 | 2640 | 2890 | 3140 |
| С        | mm  | 220  | 245  | 245  | 270  | 245  | 245  | 270  | 270  | 300  | 300  | 300  | 300  | 300  |
| d        | mm  | 790  | 835  | 870  | 929  | 902  | 910  | 997  | 1019 | 1070 | 1095 | 1290 | 1290 | 1290 |
| е        | mm  | 510  | 535  | 570  | 605  | 585  | 610  | 645  | 670  | 690  | 715  | 820  | 820  | 820  |
| f        | mm  | 3520 | 3615 | 3685 | 3804 | 3732 | 3765 | 3912 | 3959 | 4060 | 4110 | 4610 | 4610 | 4610 |
| g        | mm  | 5620 | 5620 | 5620 | 5620 | 6665 | 6665 | 6665 | 6665 | 6810 | 6810 | 7360 | 7860 | 8360 |
| h        | mm  | 400  | 425  | 460  | 495  | 475  | 500  | 540  | 560  | 585  | 610  | 765  | 765  | 765  |
| i        | mm  | 820  | 865  | 935  | 1005 | 970  | 1015 | 1095 | 1135 | 1185 | 1235 | 1545 | 1545 | 1545 |
| j        | mm  | 1735 | 1735 | 1730 | 1730 | 2680 | 2680 | 2680 | 2680 | 2580 | 2580 | 3150 | 3650 | 4190 |
| k        | mm  | 180  | 205  | 205  | 230  | 205  | 205  | 230  | 230  | 255  | 255  | 255  | 255  | 255  |





| Cold In                                                                    | High tempera   |     |     |     |                              |                                    |    |
|----------------------------------------------------------------------------|----------------|-----|-----|-----|------------------------------|------------------------------------|----|
| <ul> <li>Evaporate</li> <li>Chilled weight</li> <li>Refrigerate</li> </ul> | ater box       |     | er  |     | <ul> <li>Solution</li> </ul> | tempera<br>tion Pipin<br>tion heat | g  |
| Model (R                                                                   | EW)            | 015 | 018 | 021 | 025                          | 028                                | 0  |
| Cold Surface                                                               | m <sup>2</sup> | 8.0 | 8.5 | 9.0 | 10.0                         | 11.5                               | 12 |

Hot Surface m<sup>2</sup> 13.5 14.6 15.0 16.6 18.4



## ature Shell side

e Generator shell

#### changers

# Low temperature shell side

- Steam header
- Refrigerant steam piping

| 032  | 036  | 040  | 045  | 050  | 056  | 063  | 070  |
|------|------|------|------|------|------|------|------|
| 12.5 | 13.1 | 15.0 | 16.0 | 17.0 | 22.8 | 24.0 | 25.9 |
| 19.2 | 21.2 | 21.6 | 23.0 | 24.1 | 30.1 | 31.7 | 34.2 |